Robust partitional clustering by outlier and density insensitive seeding
نویسندگان
چکیده
The leading partitional clustering technique, k-means, is one of the most computationally efficient clustering methods. However, it produces a local optimal solution that strongly depends on its initial seeds. Bad initial seeds can also cause the splitting or merging of natural clusters even if the clusters are well separated. In this paper, we propose, ROBIN, a novel method for initial seed selection in k-means types of algorithms. It imposes constraints on the chosen seeds that lead to better clustering when k-means converges. The constraints make the seed selection method insensitive to outliers in the data and also assist it to handle variable density or multi-scale clusters. Furthermore, they (constraints) make the method deterministic, so only one run suffices to obtain good initial seeds, as opposed to traditional random seed selection approaches that need many runs to obtain good seeds that lead to satisfactory clustering. We did a comprehensive evaluation of ROBIN against state-of-the-art seeding methods on a wide range of synthetic and real datasets. We show that ROBIN consistently outperforms existing approaches in terms of the clustering quality.
منابع مشابه
Application of Outlier Robust Nonlinear Mixed Effect Estimation in Examining the Effect of Phenylephrine in Rat Corpus Cavernosum
Ignoring two main characteristics of the concentration-response data, correlation between observations and presence of outliers, may lead to misleading results. Therefore the special method should be considered. In this paper in to examine the effect of phenylephrine in rat Corpus cavernosum, outlier robust nonlinear mixed estimation is used. in this study, eight different doses of phenylephrin...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملC ONSTRAINT BASED P ARTITIONAL C LUSTERING – A C OMPREHENSIVE S TUDY AND A NALYSIS Aparna
Data clustering is the concept of forming predefined number of clusters where the data points within each cluster are very similar to each other and the data points between clusters are dissimilar to each other. The concept of clustering is widely used in various domains like bioinformatics, medical data, imaging, marketing study and crime analysis. The popular types of clustering techniques ar...
متن کاملOn Data-Independent Properties for Density-Based Dissimilarity Measures in Hybrid Clustering
Hybrid clustering combines partitional and hierarchical clustering for computational effectiveness and versatility in cluster shape. In such clustering, a dissimilarity measure plays a crucial role in the hierarchical merging. The dissimilarity measure has great impact on the final clustering, and data-independent properties are needed to choose the right dissimilarity measure for the problem a...
متن کاملA Detailed Study and Analysis of different Partitional Data Clustering Techniques
The concept of Data Clustering is considered to be very significant in various application areas like text mining, fraud detection, health care, image processing, bioinformatics etc. Due to its application in a variety of domains, various techniques are presented by many research domains in the literature. Data Clustering is one of the important tasks that make up Data Mining. Clustering can be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 30 شماره
صفحات -
تاریخ انتشار 2009